Solved

Find U × V and Show That It Is Orthogonal u=i+kv=j3k\begin{array} { l } \mathbf { u } = - \mathbf { i } + \mathbf { k } \\\mathbf { v } = \mathbf { j } - 3 \mathbf { k }\end{array}

Question 139

Multiple Choice

Find u × v and show that it is orthogonal to both u and v. u=i+kv=j3k\begin{array} { l } \mathbf { u } = - \mathbf { i } + \mathbf { k } \\\mathbf { v } = \mathbf { j } - 3 \mathbf { k }\end{array}


A) u×v=i3jk(u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = \mathbf { i } - 3 \mathbf { j } - \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
B) u×v=i3jk(u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - \mathbf { i } - 3 \mathbf { j } - \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
C) u×v=i+3jk(u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - \mathbf { i } + 3 \mathbf { j } - \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
D) u×v=i3j+k(u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = - \mathbf { i } - 3 \mathbf { j } + \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
E) u×v=i3j+k(u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = \mathbf { i } - 3 \mathbf { j } + \mathbf { k } \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions