Solved

Find a Unit Vector Orthogonal to U and V u=i+jv=j+k\begin{array} { l } \mathbf { u } = \mathbf { i } + \mathbf { j } \\\mathbf { v } = \mathbf { j } + \mathbf { k }\end{array}

Question 153

Multiple Choice

Find a unit vector orthogonal to u and v. u=i+jv=j+k\begin{array} { l } \mathbf { u } = \mathbf { i } + \mathbf { j } \\\mathbf { v } = \mathbf { j } + \mathbf { k }\end{array}


A)  Unit vector =33(ij+k) \text { Unit vector } = \frac { \sqrt { 3 } } { 3 } ( - \mathbf { i } - \mathbf { j } + \mathbf { k } )
B)  Unit vector =33(i+j+k) \text { Unit vector } = \frac { \sqrt { 3 } } { 3 } ( - \mathrm { i } + \mathbf { j } + \mathbf { k } )
C)  Unit vector =33(ijk) \text { Unit vector } = \frac { \sqrt { 3 } } { 3 } ( \mathbf { i } - \mathbf { j } - \mathbf { k } )
D)  Unit vector =33(ij+k) \text { Unit vector } = \frac { \sqrt { 3 } } { 3 } ( \mathbf { i } - \mathbf { j } + \mathbf { k } )
E)  Unit vector =33(i+j+k) \text { Unit vector } = \frac { \sqrt { 3 } } { 3 } ( \mathbf { i } + \mathbf { j } + \mathbf { k } )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions