Solved

Find the Area of the Parallelogram That Has the Vectors

Question 176

Multiple Choice

Find the area of the parallelogram that has the vectors as adjacent sides. u=10i+6j+10kv=5i10j+15k\begin{array} { l } \mathbf { u } = 10 \mathbf { i } + 6 \mathbf { j } + 10 \mathbf { k } \\\mathbf { v } = 5 \mathbf { i } - 10 \mathbf { j } + 15 \mathbf { k }\end{array}


A)  Area =63000 square units \text { Area } = \sqrt { 63000 } \text { square units }
B)  Area =29200 square units \text { Area } = \sqrt { 29200 } \text { square units }
C)  Area =27090 square units \text { Area } = \sqrt { 27090 } \text { square units }
D)  Area =46230 square units \text { Area } = \sqrt { 46230 } \text { square units }
E)  Area =36130 square units \text { Area } = \sqrt { 36130 } \text { square units }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions