Solved

Find U × V and Show That It Is Orthogonal u=(13,1,14)v=(12,12,1)\mathbf { u } = ( 13,1,14 ) \quad \mathbf { v } = ( 12 , - 12 , - 1 )

Question 120

Multiple Choice

Find u × v and show that it is orthogonal to both u and v. u=(13,1,14) v=(12,12,1) \mathbf { u } = ( 13,1,14 ) \quad \mathbf { v } = ( 12 , - 12 , - 1 )


A) u×v=(181,167,167) (u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = ( 181,167 , - 167 ) \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
B) u×v=(181,167,168) (u×v) u0(u×v) v0\begin{array} { l } \mathbf { u } \times \mathbf { v } = ( 181,167 , - 168 ) \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } \neq 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } \neq 0\end{array}
C) u×v=(167,181,168) (u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = ( 167,181,168 ) \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
D) u×v=(167,181,168) (u×v) u=0(u×v) v=0\begin{array} { l } \mathbf { u } \times \mathbf { v } = ( 167,181 , - 168 ) \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } = 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } = 0\end{array}
E) u×v=(167,181,168) (u×v) u0(u×v) v0\begin{array} { l } \mathbf { u } \times \mathbf { v } = ( 167,181 , - 168 ) \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { u } \neq 0 \\( \mathbf { u } \times \mathbf { v } ) \cdot \mathbf { v } \neq 0\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions