Solved

Verify That the Points Are the Vertices of a Parallelogram A(2,2,2),B(3,4,5),C(7,6,3),D(8,8,6)A ( 2,2,2 ) , B ( 3,4,5 ) , C ( 7,6,3 ) , D ( 8,8,6 )

Question 132

Multiple Choice

Verify that the points are the vertices of a parallelogram. A(2,2,2) ,B(3,4,5) ,C(7,6,3) ,D(8,8,6) A ( 2,2,2 ) , B ( 3,4,5 ) , C ( 7,6,3 ) , D ( 8,8,6 )


A) AB=(1,2,3) \overrightarrow { A B } = ( 1,2,3 ) is parallel to CD=(1,2,3) \overrightarrow { C D } = ( 1,2,3 )
BD=(1,4,5) \overrightarrow { B D } = ( 1,4,5 ) is parallel to AC=(1,4,5) \overrightarrow { A C } = ( 1,4,5 )
Opposites are parallel and same length. So ABCDA B C D form a parallelogram.
B) AB=(1,2,3) \overrightarrow { A B } = ( 1,2,3 ) is parallel to CD=(5,4,1) \overrightarrow { C D } = ( 5,4,1 )
BD=(5,4,1) \overrightarrow { B D } = ( 5,4,1 ) is parallel to AC=(1,2,3) \overrightarrow { A C } = ( 1,2,3 )
Opposites are parallel and same length. So ABCDA B C D form a parallelogram.
C) AB=(1,2,3) \overrightarrow { A B } = ( 1,2,3 ) is not parallel to CD=(1,2,3) \overrightarrow { C D } = ( 1,2,3 )
BD=(5,4,1) \overrightarrow { B D } = ( 5,4,1 ) is not parallel to AC=(5,4,1) \overrightarrow { A C } = ( 5,4,1 )
Opposites are not parallel and same length. So ABCDA B C D form a parallelogram.
D) AB=(1,2,3) \overrightarrow { A B } = ( 1,2,3 ) is perpendicular to CD=(1,2,3) \overrightarrow { C D } = ( 1,2,3 )
BD=(5,4,1) \overrightarrow { B D } = ( 5,4,1 ) is perpendicular to AC=(5,4,1) \overrightarrow { A C } = ( 5,4,1 )
Opposites are perpendicular and same length. So ABCDA B C D form a parallelogram .
E) AB=(1,2,3) \overrightarrow { A B } = ( 1,2,3 ) is parallel to CD=(1,2,3) \overrightarrow { C D } = ( 1,2,3 )
BD=(5,4,1) \overrightarrow { B D } = ( 5,4,1 ) is parallel to AC=(5,4,1) \overrightarrow { A C } = ( 5,4,1 )
Opposites are parallel and same length. So ABCDA B C D form a parallelogram.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions