Solved

Use the Graph to Determine the Limit Visually (If It g(x)=3x2+xxg ( x ) = \frac { - 3 x ^ { 2 } + x } { x }

Question 3

Multiple Choice

Use the graph to determine the limit visually (if it exists) .Then identify another function g2(x) that agrees with the given function at all but one point.
g(x) =3x2+xxg ( x ) = \frac { - 3 x ^ { 2 } + x } { x }  Use the graph to determine the limit visually (if it exists) .Then identify another function g<sub>2</sub>(x) that agrees with the given function at all but one point.    g ( x )  = \frac { - 3 x ^ { 2 } + x } { x }         \lim _ { x \rightarrow - 2 } g ( x )  =     A)   g _ { 2 } ( x )  = - 3 x + 1   \lim _ { x \rightarrow - 2 } g ( x )  = - 7  B)   g _ { 2 } ( x )  = - 3 x + 2   \lim g ( x )  = - 13  C)   g _ { 2 } ( x )  = - 3 x + 2   \lim _ { x \rightarrow - 2 } g ( x )  = 13  D)   g _ { 2 } ( x )  = - 3 x + 1   \lim g ( x )  = 7  E)   g _ { 2 } ( x )  = - 3 x + 1   \lim _ { x \rightarrow - 2 } g ( x )  = 13 limx2g(x) =\lim _ { x \rightarrow - 2 } g ( x ) =


A) g2(x) =3x+1g _ { 2 } ( x ) = - 3 x + 1 limx2g(x) =7\lim _ { x \rightarrow - 2 } g ( x ) = - 7
B) g2(x) =3x+2g _ { 2 } ( x ) = - 3 x + 2 limg(x) =13\lim g ( x ) = - 13
C) g2(x) =3x+2g _ { 2 } ( x ) = - 3 x + 2 limx2g(x) =13\lim _ { x \rightarrow - 2 } g ( x ) = 13
D) g2(x) =3x+1g _ { 2 } ( x ) = - 3 x + 1 limg(x) =7\lim g ( x ) = 7
E) g2(x) =3x+1g _ { 2 } ( x ) = - 3 x + 1 limx2g(x) =13\lim _ { x \rightarrow - 2 } g ( x ) = 13

Correct Answer:

verifed

Verified

Related Questions