Solved

Find the Limit (If It Exists) limx03secxtanx\lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x }

Question 174

Multiple Choice

Find the limit (if it exists) .Use a graphing utility to verify your result graphically. limx03secxtanx\lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x }


A) limx03secxtanx=19\lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = - \frac { 1 } { 9 }  Find the limit (if it exists) .Use a graphing utility to verify your result graphically.    \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x }    A)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = - \frac { 1 } { 9 }      B)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = \frac { 1 } { 9 }        C)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = - \frac { 1 } { 12 }      D)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = \frac { 1 } { 12 }    E) does not exist
B) limx03secxtanx=19\lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = \frac { 1 } { 9 }  Find the limit (if it exists) .Use a graphing utility to verify your result graphically.    \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x }    A)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = - \frac { 1 } { 9 }      B)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = \frac { 1 } { 9 }        C)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = - \frac { 1 } { 12 }      D)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = \frac { 1 } { 12 }    E) does not exist
C) limx03secxtanx=112\lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = - \frac { 1 } { 12 }  Find the limit (if it exists) .Use a graphing utility to verify your result graphically.    \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x }    A)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = - \frac { 1 } { 9 }      B)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = \frac { 1 } { 9 }        C)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = - \frac { 1 } { 12 }      D)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = \frac { 1 } { 12 }    E) does not exist
D) limx03secxtanx=112\lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = \frac { 1 } { 12 }  Find the limit (if it exists) .Use a graphing utility to verify your result graphically.    \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x }    A)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = - \frac { 1 } { 9 }      B)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = \frac { 1 } { 9 }        C)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = - \frac { 1 } { 12 }      D)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = \frac { 1 } { 12 }    E) does not exist
E) does not exist  Find the limit (if it exists) .Use a graphing utility to verify your result graphically.    \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x }    A)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = - \frac { 1 } { 9 }      B)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = \frac { 1 } { 9 }        C)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = - \frac { 1 } { 12 }      D)   \lim _ { x \rightarrow 0 } \frac { 3 \sec x } { \tan x } = \frac { 1 } { 12 }    E) does not exist

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions