Solved

Find limh0f(x+h)f(x)h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h }

Question 214

Multiple Choice

Find limh0f(x+h) f(x) h\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } . f(x) =1x3f ( x ) = \frac { 1 } { x - 3 }


A) limh0f(x+h) f(x) h=4(x3) 2\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = - \frac { 4 } { ( x - 3 ) ^ { - 2 } }
B) limh0f(x+h) f(x) h=6(x3) 2\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = - \frac { 6 } { ( x - 3 ) ^ { 2 } }
C) limh0f(x+h) f(x) h=1(x3) 2\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = - \frac { 1 } { ( x - 3 ) ^ { - 2 } }
D) limh0f(x+h) f(x) h=1(x3) 2\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = \frac { 1 } { ( x - 3 ) ^ { 2 } }
E) limh0f(x+h) f(x) h=1(x3) 2\lim _ { h \rightarrow 0 } \frac { f ( x + h ) - f ( x ) } { h } = - \frac { 1 } { ( x - 3 ) ^ { 2 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions