Solved

Select the Correct Graph for the Following Function and Find f(x)={5x+1,x<2x+9,x2f ( x ) = \left\{ \begin{array} { l } 5 x + 1 , x < 2 \\x + 9 , x \geq 2\end{array} \right.

Question 66

Multiple Choice

Select the correct graph for the following function and find the limit (if it exists) as x approaches 2. f(x) ={5x+1,x<2x+9,x2f ( x ) = \left\{ \begin{array} { l } 5 x + 1 , x < 2 \\x + 9 , x \geq 2\end{array} \right.


A)  Select the correct graph for the following function and find the limit (if it exists) as x approaches 2.   f ( x )  = \left\{ \begin{array} { l }  5 x + 1 , x < 2 \\ x + 9 , x \geq 2 \end{array} \right.    A)     The limit exists as x approaches 2:  \lim _ { x \rightarrow 2 } f ( x )  = 9  B)        \lim _ { x \rightarrow2 } f ( x )  \text { does not exist }  . C)       \lim _ { x \rightarrow2 } f ( x )  \text { does not exist }    D)     The limit exists as x approaches 2:  \lim _ { x \rightarrow 2 } f ( x )  = 11  E)      The limit exists as x approaches 2:  \lim _ { x \rightarrow 2 } f ( x )  = - 11 The limit exists as x approaches 2: limx2f(x) =9\lim _ { x \rightarrow 2 } f ( x ) = 9
B)  Select the correct graph for the following function and find the limit (if it exists) as x approaches 2.   f ( x )  = \left\{ \begin{array} { l }  5 x + 1 , x < 2 \\ x + 9 , x \geq 2 \end{array} \right.    A)     The limit exists as x approaches 2:  \lim _ { x \rightarrow 2 } f ( x )  = 9  B)        \lim _ { x \rightarrow2 } f ( x )  \text { does not exist }  . C)       \lim _ { x \rightarrow2 } f ( x )  \text { does not exist }    D)     The limit exists as x approaches 2:  \lim _ { x \rightarrow 2 } f ( x )  = 11  E)      The limit exists as x approaches 2:  \lim _ { x \rightarrow 2 } f ( x )  = - 11 limx2f(x)  does not exist \lim _ { x \rightarrow2 } f ( x ) \text { does not exist } .
C)  Select the correct graph for the following function and find the limit (if it exists) as x approaches 2.   f ( x )  = \left\{ \begin{array} { l }  5 x + 1 , x < 2 \\ x + 9 , x \geq 2 \end{array} \right.    A)     The limit exists as x approaches 2:  \lim _ { x \rightarrow 2 } f ( x )  = 9  B)        \lim _ { x \rightarrow2 } f ( x )  \text { does not exist }  . C)       \lim _ { x \rightarrow2 } f ( x )  \text { does not exist }    D)     The limit exists as x approaches 2:  \lim _ { x \rightarrow 2 } f ( x )  = 11  E)      The limit exists as x approaches 2:  \lim _ { x \rightarrow 2 } f ( x )  = - 11 limx2f(x)  does not exist \lim _ { x \rightarrow2 } f ( x ) \text { does not exist }
D)  Select the correct graph for the following function and find the limit (if it exists) as x approaches 2.   f ( x )  = \left\{ \begin{array} { l }  5 x + 1 , x < 2 \\ x + 9 , x \geq 2 \end{array} \right.    A)     The limit exists as x approaches 2:  \lim _ { x \rightarrow 2 } f ( x )  = 9  B)        \lim _ { x \rightarrow2 } f ( x )  \text { does not exist }  . C)       \lim _ { x \rightarrow2 } f ( x )  \text { does not exist }    D)     The limit exists as x approaches 2:  \lim _ { x \rightarrow 2 } f ( x )  = 11  E)      The limit exists as x approaches 2:  \lim _ { x \rightarrow 2 } f ( x )  = - 11 The limit exists as x approaches 2: limx2f(x) =11\lim _ { x \rightarrow 2 } f ( x ) = 11
E)  Select the correct graph for the following function and find the limit (if it exists) as x approaches 2.   f ( x )  = \left\{ \begin{array} { l }  5 x + 1 , x < 2 \\ x + 9 , x \geq 2 \end{array} \right.    A)     The limit exists as x approaches 2:  \lim _ { x \rightarrow 2 } f ( x )  = 9  B)        \lim _ { x \rightarrow2 } f ( x )  \text { does not exist }  . C)       \lim _ { x \rightarrow2 } f ( x )  \text { does not exist }    D)     The limit exists as x approaches 2:  \lim _ { x \rightarrow 2 } f ( x )  = 11  E)      The limit exists as x approaches 2:  \lim _ { x \rightarrow 2 } f ( x )  = - 11 The limit exists as x approaches 2: limx2f(x) =11\lim _ { x \rightarrow 2 } f ( x ) = - 11

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions