Solved

Find the Limit by Direct Substitution limx4(4xx2+1)\lim _ { x \rightarrow - 4 } \left( \frac { 4 x } { x ^ { 2 } + 1 } \right)

Question 51

Multiple Choice

Find the limit by direct substitution. limx4(4xx2+1) \lim _ { x \rightarrow - 4 } \left( \frac { 4 x } { x ^ { 2 } + 1 } \right)


A) limx4(4xx2+1) \lim _ { x \rightarrow - 4 } \left( \frac { 4 x } { x ^ { 2 } + 1 } \right) = \infty
B) limx4(4xx2+1) \lim _ { x \rightarrow - 4 } \left( \frac { 4 x } { x ^ { 2 } + 1 } \right) = 1617- \frac { 16 } { 17 }
C) limx4(4xx2+1) \lim _ { x \rightarrow - 4 } \left( \frac { 4 x } { x ^ { 2 } + 1 } \right) = 1317\frac { 13 } { 17 }
D) limx4(4xx2+1) \lim _ { x \rightarrow - 4 } \left( \frac { 4 x } { x ^ { 2 } + 1 } \right) = 1713- \frac { 17 } { 13 }
E) limx4(4xx2+1) \lim _ { x \rightarrow - 4 } \left( \frac { 4 x } { x ^ { 2 } + 1 } \right) = 1716\frac { 17 } { 16 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions