Solved

A Regression and Correlation Analysis Resulted in the Following Information

Question 26

Essay

A regression and correlation analysis resulted in the following information regarding an independent variable (x) and a dependent variable (y). x=42(yy)(xx)=37Σy=63(xxˉ)2=84n=7Σ(yyˉ)2=28(yy^)2=11.7024\begin{array} { l l } \sum x = 42 & \sum ( y - y ) ( x - x ) = 37 \\\Sigma y = 63 & \sum ( x - \bar { x } ) ^ { 2 } = 84 \\n = 7 & \Sigma ( y - \bar { y } ) ^ { 2 } = 28 \\& \sum ( y - \widehat { y } ) ^ { 2 } = 11.7024\end{array}
a.
Develop the least squares estimated regression equation.
b.
At a .05 level of significance, perform a t test and determine whether or not the slope is significantly different from zero.
c.
Perform an F test to determine whether or not the model is significant. Let α = .05.
d.
Compute the coefficient of determination.

Correct Answer:

verifed

Verified


a. blured image = 6.357 + .440...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions