Solved

Write Down the Transition Matrix Associated with the Given State A=14A = \frac { 1 } { 4 }

Question 86

Multiple Choice

Write down the transition matrix associated with the given state transition diagram below.  Write down the transition matrix associated with the given state transition diagram below.          A = \frac { 1 } { 4 }  ,  B = \frac { 3 } { 4 }  ,  C = \frac { 1 } { 3 }  ,  D = \frac { 2 } { 3 }    A)   P = \left[ \begin{array} { l l }  \frac { 1 } { 4 } & \frac { 3 } { 4 } \\ \frac { 3 } { 4 } & \frac { 3 } { 3 } \end{array} \right]  B)   P = \left[ \begin{array} { l l }  \frac { 1 } { 4 } & \frac { 3 } { 4 } \\ \frac { 2 } { 3 } & \frac { 1 } { 3 } \end{array} \right]  C)   P = \left[ \begin{array} { l l }  \frac { 3 } { 4 } & \frac { 1 } { 4 } \\ \frac { 1 } { 3 } & \frac { 2 } { 3 } \end{array} \right]  D)   P = \left[ \begin{array} { l l }  \frac { 3 } { 4 } & \frac { 1 } { 4 } \\ \frac { 2 } { 3 } & \frac { 1 } { 4 } \end{array} \right]  E)   P = \left[ \begin{array} { l l }  \frac { 1 } { 3 } & \frac { 3 } { 4 } \\ \frac { 2 } { 3 } & \frac { 1 } { 4 } \end{array} \right]
A=14A = \frac { 1 } { 4 } , B=34B = \frac { 3 } { 4 } , C=13C = \frac { 1 } { 3 } , D=23D = \frac { 2 } { 3 }


A) P=[14343433]P = \left[ \begin{array} { l l } \frac { 1 } { 4 } & \frac { 3 } { 4 } \\\frac { 3 } { 4 } & \frac { 3 } { 3 }\end{array} \right]
B) P=[14342313]P = \left[ \begin{array} { l l } \frac { 1 } { 4 } & \frac { 3 } { 4 } \\\frac { 2 } { 3 } & \frac { 1 } { 3 }\end{array} \right]
C) P=[34141323]P = \left[ \begin{array} { l l } \frac { 3 } { 4 } & \frac { 1 } { 4 } \\\frac { 1 } { 3 } & \frac { 2 } { 3 }\end{array} \right]
D) P=[34142314]P = \left[ \begin{array} { l l } \frac { 3 } { 4 } & \frac { 1 } { 4 } \\\frac { 2 } { 3 } & \frac { 1 } { 4 }\end{array} \right]
E) P=[13342314]P = \left[ \begin{array} { l l } \frac { 1 } { 3 } & \frac { 3 } { 4 } \\\frac { 2 } { 3 } & \frac { 1 } { 4 }\end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions