Solved

You Are Given a Transition Matrix P and Initial Distribution P=[011323]P = \left[ \begin{array} { c c } 0 & 1 \\\frac { 1 } { 3 } & \frac { 2 } { 3 }\end{array} \right]

Question 129

Multiple Choice

You are given a transition matrix P and initial distribution vector v. Find the two-step transition matrix and the distribution vector after two steps.
P=[011323]P = \left[ \begin{array} { c c } 0 & 1 \\\frac { 1 } { 3 } & \frac { 2 } { 3 }\end{array} \right] , v=[1434]v = \left[ \begin{array} { l l } \frac { 1 } { 4 } & \frac { 3 } { 4 }\end{array} \right]


A) The two-step transition matrix is [13232979]\left[ \begin{array} { l l } \frac { 1 } { 3 } & \frac { 2 } { 3 } \\\frac { 2 } { 9 } & \frac { 7 } { 9 }\end{array} \right] The distribution vector after two steps is [1434]\left[ \begin{array} { l l } \frac { 1 } { 4 } & \frac { 3 } { 4 }\end{array} \right]
B) The two-step transition matrix is [13292379]\left[ \begin{array} { l l } \frac { 1 } { 3 } & \frac { 2 } { 9 } \\\frac { 2 } { 3 } & \frac { 7 } { 9 }\end{array} \right]
The distribution vector after two steps is [01]\left[ \begin{array} { l l } 0 & 1\end{array} \right]
C) The two-step transition matrix is [011949]\left[ \begin{array} { c c } 0 & 1 \\\frac { 1 } { 9 } & \frac { 4 } { 9 }\end{array} \right]
The distribution vector after two steps is [1434]\left[ \begin{array} { l l } \frac { 1 } { 4 } & \frac { 3 } { 4 }\end{array} \right]
D) The two-step transition matrix is [13232979]\left[ \begin{array} { l l } \frac { 1 } { 3 } & \frac { 2 } { 3 } \\\frac { 2 } { 9 } & \frac { 7 } { 9 }\end{array} \right]
The distribution vector after two steps is [01]\left[ \begin{array} { l l } 0 & 1\end{array} \right]
E) The two-step transition matrix is [13292379]\left[ \begin{array} { l l } \frac { 1 } { 3 } & \frac { 2 } { 9 } \\\frac { 2 } { 3 } & \frac { 7 } { 9 }\end{array} \right]
The distribution vector after two steps is [1434]\left[ \begin{array} { l l } \frac { 1 } { 4 } & \frac { 3 } { 4 }\end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions