Solved

You Are Given a Transition Matrix P P=[0.300.710000.60.4]P = \left[ \begin{array} { c c c } 0.3 & 0 & 0.7 \\1 & 0 & 0 \\0 & 0.6 & 0.4\end{array} \right]

Question 26

Multiple Choice

You are given a transition matrix P. Find the steady-state distribution vector. P=[0.300.710000.60.4]P = \left[ \begin{array} { c c c } 0.3 & 0 & 0.7 \\1 & 0 & 0 \\0 & 0.6 & 0.4\end{array} \right]


A) The steady-state distribution vector is [114332431143]\left[ \frac { 11 } { 43 } \frac { 32 } { 43 } \quad \frac { 11 } { 43 } \right]
B) The steady-state distribution vector is [358615432186]\left[ \frac { 35 } { 86 } \quad \frac { 15 } { 43 } \frac { 21 } { 86 } \right]
C) The steady-state distribution vector is [154321863586]\left[ \begin{array} { l l l } \frac { 15 } { 43 } & \frac { 21 } { 86 } & \frac { 35 } { 86 }\end{array} \right]
D) The steady-state distribution vector is [258613433586]\left[ \frac { 25 } { 86 } \quad \frac { 13 } { 43 } \frac { 35 } { 86 } \right]
E) The steady-state distribution vector is [218615433586]\left[ \frac { 21 } { 86 } \quad \frac { 15 } { 43 } \frac { 35 } { 86 } \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions