Solved

Use a Venn Diagram or Some Other Method to Obtain n(ABC)n ( A \cup B \cup C )

Question 57

Multiple Choice

Use a Venn diagram or some other method to obtain a formula for
n(ABC) n ( A \cup B \cup C ) in terms of n(A) n ( A ) , n(B) n ( B ) , n(C) n ( C ) , n(AB) n ( A \cap B ) , n(AC) n ( A \cap C ) , n(BC) n ( B \cap C ) , and n(ABC) n ( A \cap B \cap C ) .


A) n(ABC) =n(A) +n(B) +n(C) n(AB) n(AC) n(BC) +n(ABC) n ( A \cup B \cup C ) = n ( A ) + n ( B ) + n ( C ) - n ( A \cap B ) - n ( A \cap C ) - n ( B \cap C ) + n ( A \cap B \cap C )

B) n(ABC) =n(A) +n(B) +n(C) n(AB) n(AC) n(BC) n(ABC) n ( A \cup B \cup C ) = n ( A ) + n ( B ) + n ( C ) - n ( A \cap B ) - n ( A \cap C ) - n ( B \cap C ) - n ( A \cap B \cap C )

C) n(ABC) =n(A) +n(B) +n(C) n(ABC) n ( A \cup B \cup C ) = n ( A ) + n ( B ) + n ( C ) - n ( A \cap B \cap C )

D) n(ABC) =n(A) +n(B) +n(C) +n(AB) +n(AC) +n(BC) n(ABC) n ( A \cup B \cup C ) = n ( A ) + n ( B ) + n ( C ) + n ( A \cap B ) + n ( A \cap C ) + n ( B \cap C ) - n ( A \cap B \cap C )

E) n(ABC) =n(A) +n(B) +n(C) n(AB) n(AC) n(BC) n ( A \cup B \cup C ) = n ( A ) + n ( B ) + n ( C ) - n ( A \cap B ) - n ( A \cap C ) - n ( B \cap C )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions