Solved

Use Venn Diagrams to Determine Which of the Following Identities (BD)G=(BD)G( B \cup D ) \cap G = ( B \cup D ) \cap G

Question 67

Multiple Choice

Use Venn Diagrams to determine which of the following identities are true for the subsets B, D, and G of T.


A) (BD) G=(BD) G( B \cup D ) \cap G = ( B \cup D ) \cap G (Associative Law) , and B(DG) =(BG) (DG) B \cup ( D \cap G ) = ( B \cap G ) \cup ( D \cap G ) (Distributive law)
B) (BD) =BG( B \cup D ) ^ { \prime } = B ^ { \prime } \cap G ^ { \prime } (De Morgan's law) , and (BD) G=B(DG) ( B \cap D ) \cap G = B \cap ( D \cap G ) (Associative Law)
C) (BD) =BD( B \cap D ) ^ { \prime } = B ^ { \prime } \cup D ^ { \prime } (De Morgan's law) , and (BD) T=B(DT) ( B \cup D ) \cup T = B \cup ( D \cup T ) (Associative Law)
D) (BD) =BD( B \cap D ) ^ { \prime } = B ^ { \prime } \cap D ^ { \prime } (De Morgan's law) , and B(DT) =(BT) (BT) B \cup ( D \cap T ) = ( B \cap T ) \cup ( B \cap T ) (Distributive law)
E) B(DG) =(BG) (BG) B \cup ( D \cap G ) = ( B \cap G ) \cup ( B \cap G ) (Distributive law) , and (BD) =BD( B \cap D ) ^ { \prime } = B ^ { \prime } \cup D ^ { \prime } (De Morgan's law)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions