Solved

We Are to Minimize p=3a+2bp = 3 a + 2 b

Question 24

Multiple Choice

We are to minimize p=3a+2bp = 3 a + 2 b subject to the following constraints.
{a+b43a+b6a,b0}\left\{ \begin{array} { c } a + b \geq 4 \\3 a + b \geq 6 \\a , b \geq 0\end{array} \right\}
What is the dual problem in matrix form


A) [114316320]\left[ \begin{array} { l l l } 1 & 1 & 4 \\3 & 1 & 6 \\3 & 2 & 0\end{array} \right]
B) [114316110]\left[ \begin{array} { l l l } 1 & 1 & 4 \\3 & 1 & 6 \\1 & 1 & 0\end{array} \right]
C) [114316320]\left[ \begin{array} { c c c } 1 & 1 & 4 \\3 & 1 & 6 \\- 3 & - 2 & 0\end{array} \right]
D) [133112460]\left[ \begin{array} { c c c } 1 & 3 & - 3 \\1 & 1 & - 2 \\4 & 6 & 0\end{array} \right]
E) [133112460]\left[ \begin{array} { l l l } 1 & 3 & 3 \\1 & 1 & 2 \\4 & 6 & 0\end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions