Solved

We Are to Minimize p=3a+2bp = 3 a + 2 b

Question 33

Multiple Choice

We are to minimize p=3a+2bp = 3 a + 2 b subject to the following constraints. a+b43a+b6a,b0\begin{array} { l } a + b \geq 4 \\3 a + b \geq 6 \\a , b \geq 0\end{array}
After using the simplex method for dual problem to arrive at the tableau below, what is the maximum value for pp
X y s t p
[011212012101232032001319]\left[ \begin{array} { c c c c c } 0 & 1 & \frac { 1 } { 2 } & - \frac { 1 } { 2 } & 0 \\\frac { 1 } { 2 } & & & \\1 & 0 & - \frac { 1 } { 2 } & \frac { 3 } { 2 } & 0 \\\frac { 3 } { 2 } & & & & \\0 & 0 & 1 & 3 & 1 \\9 & & & &\end{array} \right]


A) 9
B) 3
C) 5.5
D) 12\frac { 1 } { 2 }
E) 32\frac { 3 } { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions