Solved

Write Down (Without Solving) the Dual LP Problem c=s+6t+uc = s + 6 t + u

Question 159

Multiple Choice

Write down (without solving) the dual LP problem.
Minimize c=s+6t+uc = s + 6 t + u subject to
9st+v3,000uv1,000s+t500s0,t0,u0,v0\begin{array} { l } 9 s - t + v \geq 3,000 \\u - v \geq 1,000 \\s + t \geq 500 \\s \geq 0 , t \geq 0 , u \geq 0 , v \geq 0\end{array}


A) maximize p=x+6y+zp = x + 6 y + z subject to 9xy+w3,000zw1,000x+y500x0,y0,z0,w0\begin{array} { l } 9 x - y + w \geq 3,000 \\z - w \geq 1,000 \\x + y \geq 500 \\x \geq 0 , y \geq 0 , z \geq 0 , w \geq 0\end{array}

B) maximize p=3,000x+1,000y+500zp = 3,000 x + 1,000 y + 500 z subject to
9x+z1x+z6y1xy0x0,y0,z0\begin{array} { l } 9 x + z \geq 1 \\- x + z \geq 6 \\y \geq 1 \\x - y \geq 0 \\x \geq 0 , y \geq 0 , z \geq 0\end{array}

C) maximize p=3,000x+1,000y+500zp = 3,000 x + 1,000 y + 500 z subject to

9x+z1x+z6y1xy0x0,y0,z0\begin{array} { l } 9 x + z \leq 1 \\- x + z \leq 6 \\y \leq 1 \\x - y \leq 0 \\x \geq 0 , y \geq 0 , z \geq 0\end{array}

D) maximize p=x+6y+zp = x + 6 y + z subject to
9xy+w3,000zw1,000x+y500x0,y0,z0,w0\begin{array} { l } 9 x - y + w \leq 3,000 \\z - w \leq 1,000 \\x + y \geq 500 \\x \geq 0 , y \geq 0 , z \geq 0 , w \geq 0\end{array}

E) maximize p=x+6y+zp = x + 6 y + z subject to

9x+y+w3,000z+w1,000x+y500x0,y0,z0,w0\begin{array} { l } 9 x + y + w \geq 3,000 \\z + w \geq 1,000 \\x + y \geq 500 \\x \geq 0 , y \geq 0 , z \geq 0 , w \geq 0\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions