Solved

Solve the Games with the Given Payoff Matrix P=[352324433]P = \left[ \begin{array} { l l l } - 3 & - 5 & - 2 \\- 3 & - 2 & - 4 \\- 4 & - 3 & - 3\end{array} \right]

Question 97

Multiple Choice

Solve the games with the given payoff matrix. P=[352324433]P = \left[ \begin{array} { l l l } - 3 & - 5 & - 2 \\- 3 & - 2 & - 4 \\- 4 & - 3 & - 3\end{array} \right]


A) C=[121613]C = \left[ \begin{array} { l } \frac { 1 } { 2 } \\\frac { 1 } { 6 } \\\frac { 1 } { 3 }\end{array} \right] , R=[161213]R = \left[ \begin{array} { l l l } \frac { 1 } { 6 } & \frac { 1 } { 2 } & \frac { 1 } { 3 }\end{array} \right] , e=196e = - \frac { 19 } { 6 }
B) C=[161312]C = \left[ \begin{array} { l } \frac { 1 } { 6 } \\\frac { 1 } { 3 } \\\frac { 1 } { 2 }\end{array} \right] , R=[131216]R = \left[ \begin{array} { l l l } \frac { 1 } { 3 } & \frac { 1 } { 2 } & \frac { 1 } { 6 }\end{array} \right] , e=196e = \frac { 19 } { 6 }
C) C=[161312]C = \left[ \begin{array} { l } \frac { 1 } { 6 } \\\frac { 1 } { 3 } \\\frac { 1 } { 2 }\end{array} \right] , R=[131216]R = \left[ \begin{array} { l l l } \frac { 1 } { 3 } & \frac { 1 } { 2 } & \frac { 1 } { 6 }\end{array} \right] , e=196e = - \frac { 19 } { 6 }
D) C=[121613]C = \left[ \begin{array} { l } \frac { 1 } { 2 } \\\frac { 1 } { 6 } \\\frac { 1 } { 3 }\end{array} \right] , R=[161213]R = \left[ \begin{array} { l l l } \frac { 1 } { 6 } & \frac { 1 } { 2 } & \frac { 1 } { 3 }\end{array} \right] , e=196e = \frac { 19 } { 6 }
E) C=[131216]C = \left[ \begin{array} { l } \frac { 1 } { 3 } \\\frac { 1 } { 2 } \\\frac { 1 } { 6 }\end{array} \right] , R=[131612]R = \left[ \begin{array} { l l l } \frac { 1 } { 3 } & \frac { 1 } { 6 } & \frac { 1 } { 2 }\end{array} \right] , e=196e = \frac { 19 } { 6 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions