Solved

Solve the Games with the Given Payoff Matrix [1120120101102022]\left[ \begin{array} { c c c c } 1 & - 1 & 2 & 0 \\1 & 2 & 0 & 1 \\0 & 1 & 1 & 0 \\2 & 0 & - 2 & 2\end{array} \right]

Question 128

Multiple Choice

Solve the games with the given payoff matrix. [1120120101102022]\left[ \begin{array} { c c c c } 1 & - 1 & 2 & 0 \\1 & 2 & 0 & 1 \\0 & 1 & 1 & 0 \\2 & 0 & - 2 & 2\end{array} \right]


A) C=[132300]C = \left[ \begin{array} { c } \frac { 1 } { 3 } \\\frac { 2 } { 3 } \\0 \\0\end{array} \right] , R=[013023]R = \left[ \begin{array} { l l l l } 0 & \frac { 1 } { 3 } & 0 & \frac { 2 } { 3 }\end{array} \right] , e=23e = - \frac { 2 } { 3 }
B) C=[002313]C = \left[ \begin{array} { c } 0 \\0 \\\frac { 2 } { 3 } \\\frac { 1 } { 3 }\end{array} \right] , R=[132300]R = \left[ \begin{array} { l l l l } \frac { 1 } { 3 } & \frac { 2 } { 3 } & 0 & 0\end{array} \right] , e=23e = \frac { 2 } { 3 }
C) C=[132300]C = \left[ \begin{array} { c } \frac { 1 } { 3 } \\\frac { 2 } { 3 } \\0 \\0\end{array} \right] , R=[001323]R = \left[ \begin{array} { l l l l } 0 & 0 & \frac { 1 } { 3 } & \frac { 2 } { 3 }\end{array} \right] , e=23e = \frac { 2 } { 3 }
D) C=[002313]C = \left[ \begin{array} { c } 0 \\0 \\\frac { 2 } { 3 } \\\frac { 1 } { 3 }\end{array} \right] , R=[001323]R = \left[ \begin{array} { l l l l } 0 & 0 & \frac { 1 } { 3 } & \frac { 2 } { 3 }\end{array} \right] , e=23e = - \frac { 2 } { 3 }
E) C=[002313]C = \left[ \begin{array} { c } 0 \\0 \\\frac { 2 } { 3 } \\\frac { 1 } { 3 }\end{array} \right] , R=[002313]R = \left[ \begin{array} { l l l l } 0 & 0 & \frac { 2 } { 3 } & \frac { 1 } { 3 }\end{array} \right] , e=23e = - \frac { 2 } { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions