Solved

Use the Row Reduction Method to Find the Inverse of the Matrix

Question 76

Multiple Choice

Use the row reduction method to find the inverse of the matrix, if it exists. A=[130130302]A = \left[ \begin{array} { c c c } 1 & 3 & 0 \\- 1 & 3 & 0 \\3 & 0 & 2\end{array} \right]


A) [1616034341212120]\left[ \begin{array} { c c c } \frac { 1 } { 6 } & \frac { 1 } { 6 } & 0 \\- \frac { 3 } { 4 } & \frac { 3 } { 4 } & \frac { 1 } { 2 } \\\frac { 1 } { 2 } & - \frac { 1 } { 2 } & 0\end{array} \right]
B) [1212016160343412]\left[ \begin{array} { c c c } \frac { 1 } { 2 } & - \frac { 1 } { 2 } & 0 \\\frac { 1 } { 6 } & \frac { 1 } { 6 } & 0 \\- \frac { 3 } { 4 } & \frac { 3 } { 4 } & \frac { 1 } { 2 }\end{array} \right]
C) [1212016160343412]\left[ \begin{array} { c c c } \frac { 1 } { 2 } & - \frac { 1 } { 2 } & 0 \\\frac { 1 } { 6 } & \frac { 1 } { 6 } & 0 \\\frac { 3 } { 4 } & - \frac { 3 } { 4 } & \frac { 1 } { 2 }\end{array} \right]
D) [1616012120343412]\left[ \begin{array} { c c c } \frac { 1 } { 6 } & \frac { 1 } { 6 } & 0 \\\frac { 1 } { 2 } & - \frac { 1 } { 2 } & 0 \\- \frac { 3 } { 4 } & \frac { 3 } { 4 } & \frac { 1 } { 2 }\end{array} \right]
E) The inverse matrix does not exist.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions