Solved

Find the Derivative of the Function u(x)=sec(x5.2+2.8x9)u ( x ) = \sec \left( x ^ { 5.2 } + 2.8 x - 9 \right)

Question 50

Multiple Choice

Find the derivative of the function. u(x) =sec(x5.2+2.8x9) u ( x ) = \sec \left( x ^ { 5.2 } + 2.8 x - 9 \right)


A) u(x) =(5.2x4.2+2.8) sec(x5.22.8x9) tan(x5.22.8x9) u ^ { \prime } ( x ) = \left( 5.2 x ^ { 4.2 } + 2.8 \right) \sec \left( x ^ { 5.2 } - 2.8 x - 9 \right) \tan \left( x ^ { 5.2 } - 2.8 x - 9 \right)
B) u(x) =(5.2x4.22.8) sec(x5.2+2.8x9) tan(x5.2+2.8x9) u ^ { \prime } ( x ) = \left( 5.2 x ^ { 4.2 } - 2.8 \right) \sec \left( x ^ { 5.2 } + 2.8 x - 9 \right) \tan \left( x ^ { 5.2 } + 2.8 x - 9 \right)
C) u(x) =(5.2x4.22.8) sec(x5.22.8x9) tan(x5.2+2.8x9) u ^ { \prime } ( x ) = \left( 5.2 x ^ { 4.2 } - 2.8 \right) \sec \left( x ^ { 5.2 } - 2.8 x - 9 \right) \tan \left( x ^ { 5.2 } + 2.8 x - 9 \right)
D) u(x) =(5.2x4.2+2.8) sec(x5.2+2.8x9) tan(x5.2+2.8x9) u ^ { \prime } ( x ) = \left( 5.2 x ^ { 4.2 } + 2.8 \right) \sec \left( x ^ { 5.2 } + 2.8 x - 9 \right) \tan \left( x ^ { 5.2 } + 2.8 x - 9 \right)
E) u(x) =(5.2x4.22.8) sec(x5.22.8x9) tan(x5.22.8x9) u ^ { \prime } ( x ) = \left( 5.2 x ^ { 4.2 } - 2.8 \right) \sec \left( x ^ { 5.2 } - 2.8 x - 9 \right) \tan \left( x ^ { 5.2 } - 2.8 x - 9 \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions