Solved

Model the Curve with a Cosine Function P=14P = 14 , Its Range Is

Question 32

Multiple Choice

Model the curve with a cosine function.  Model the curve with a cosine function.     Note that the period of the curve is  P = 14  , its range is  [ 0,120 ]  the graph of the cosine function is shifted upward 60 units and shifted to the right 7 units.   A)   f ( x )  = 120 \cos \left( \frac { \pi ( x - 60 )  } { 60 } \right)  + 7  B)   f ( x )  = 120 \cos \left( \frac { \pi ( x - 60 )  } { 60 } \right)  - 7  C)   f ( x )  = 60 \cos \left( \frac { \pi ( x + 7 )  } { 7 } \right)  + 60  D)   f ( x )  = 7 \cos \left( \frac { \pi ( x - 60 )  } { 60 } \right)  + 7  E)   f ( x )  = 60 \cos \left( \frac { \pi ( x - 7 )  } { 7 } \right)  + 60
Note that the period of the curve is P=14P = 14 , its range is [0,120][ 0,120 ] the graph of the cosine function is shifted upward 60 units and shifted to the right 7 units.


A) f(x) =120cos(π(x60) 60) +7f ( x ) = 120 \cos \left( \frac { \pi ( x - 60 ) } { 60 } \right) + 7
B) f(x) =120cos(π(x60) 60) 7f ( x ) = 120 \cos \left( \frac { \pi ( x - 60 ) } { 60 } \right) - 7
C) f(x) =60cos(π(x+7) 7) +60f ( x ) = 60 \cos \left( \frac { \pi ( x + 7 ) } { 7 } \right) + 60
D) f(x) =7cos(π(x60) 60) +7f ( x ) = 7 \cos \left( \frac { \pi ( x - 60 ) } { 60 } \right) + 7
E) f(x) =60cos(π(x7) 7) +60f ( x ) = 60 \cos \left( \frac { \pi ( x - 7 ) } { 7 } \right) + 60

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions