Solved

Calculate 2fx2\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } }

Question 15

Multiple Choice

Calculate 2fx2\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } , 2fyx\frac { \partial ^ { 2 } f } { \partial y x } when defined. f(x,y) =4x0.9y0.7f ( x , y ) = 4 x ^ { 0.9 } y ^ { 0.7 }


A) 2fx2=0.36y0.7x1.1\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } = - 0.36 y ^ { 0.7 } x ^ { - 1.1 } , 2fyx=2.52y0.3x0.1\frac { \partial ^ { 2 } f } { \partial y x } = - 2.52 y ^ { 0.3 } x ^ { 0.1 }
B) 2fx2=3.6y0.7x0.1\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } = - 3.6 y ^ { 0.7 } x ^ { - 0.1 } , 2fyx=2.8y0.3x0.9\frac { \partial ^ { 2 } f } { \partial y x } = 2.8 y ^ { - 0.3 } x ^ { 0.9 }
C) 2fx2=3.6y0.7x1.1\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } = - 3.6 y ^ { 0.7 } x ^ { - 1.1 } , 2fyx=3.6y0.3x0.1\frac { \partial ^ { 2 } f } { \partial y x } = 3.6 y ^ { - 0.3 } x ^ { - 0.1 }
D) 2fx2=0.36y0.7x1.1\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } = - 0.36 y ^ { 0.7 } x ^ { - 1.1 } , 2fyx=2.52y0.3x0.1\frac { \partial ^ { 2 } f } { \partial y x } = 2.52 y ^ { - 0.3 } x ^ { - 0.1 }
E) 2fx2=4y0.3x1.1\frac { \partial ^ { 2 } f } { \partial x ^ { 2 } } = - 4 y ^ { - 0.3 } x ^ { - 1.1 } , 2fyx=4y1.3x0.1\frac { \partial ^ { 2 } f } { \partial y x } = 4 y ^ { - 1.3 } x ^ { - 0.1 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions