Solved

Find the General Solution of the Differential Equation dy dx=1x+7\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { x } + 7

Question 64

Multiple Choice

Find the general solution of the differential equation. dy dx=1x+7\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { x } + 7
Solve for y as a function of x.


A) y=ln(x+7) +7x+Cy = \ln ( x + 7 ) + 7 x + C
B) y=lnx+7x+Cy = \ln | x | + 7 x + C
C) y=lnx+Cy = \ln | x | + C
D) y=2x+Cy = - 2 x + C
E) y=x+Cy = x + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions