Solved

The Normal Distribution Curve, Which Models the Distributions of Data p(x)=12πσe(xμ)22σ2p ( x ) = \frac { 1 } { \sqrt { 2 \pi } \sigma } e ^ { \frac { - ( x - \mu ) ^ { 2 } } { 2 \sigma ^ { 2 } } }

Question 113

Multiple Choice

The normal distribution curve, which models the distributions of data in a wide range of applications, is given by the function p(x) =12πσe(xμ) 22σ2p ( x ) = \frac { 1 } { \sqrt { 2 \pi } \sigma } e ^ { \frac { - ( x - \mu ) ^ { 2 } } { 2 \sigma ^ { 2 } } } , π=3.14159265\pi = 3.14159265 \ldots and and are constants called the standard deviation and the mean, respectively. With σ=3\sigma = 3 and μ=5\mu = 5 , approximate p(x) dx\int _ { - \infty } ^ { \infty } p ( x ) \mathrm { d } x .


A) 3
B) -5
C) 5
D) -1
E) 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions