Solved

The Velocity of a Particle Moving in a Straight Line v=t(t2+4)4+5tv = t \left( t ^ { 2 } + 4 \right) ^ { 4 } + 5 t

Question 19

Multiple Choice

The velocity of a particle moving in a straight line is given by v=t(t2+4) 4+5tv = t \left( t ^ { 2 } + 4 \right) ^ { 4 } + 5 t .
Given that the distance s=0s = 0 at t=0t = 0 , find an expression for s in terms of t without any unknown constants.


A) s(t) =(t2+4) 510+5t22102.4s ( t ) = \frac { \left( t ^ { 2 } + 4 \right) ^ { 5 } } { 10 } + \frac { 5 t ^ { 2 } } { 2 } - 102.4
B) s(t) =(t2+4) 510+5t22s ( t ) = \frac { \left( t ^ { 2 } + 4 \right) ^ { 5 } } { 10 } + \frac { 5 t ^ { 2 } } { 2 }
C) s(t) =(t2+4) 52+5t22102.4s ( t ) = \frac { \left( t ^ { 2 } + 4 \right) ^ { 5 } } { 2 } + \frac { 5 t ^ { 2 } } { 2 } - 102.4
D) s(t) =(t2+4) 510+5t22+102.4s ( t ) = \frac { \left( t ^ { 2 } + 4 \right) ^ { 5 } } { 10 } + \frac { 5 t ^ { 2 } } { 2 } + 102.4
E) s(t) =(t2+4) 52+5t22+102.4s ( t ) = \frac { \left( t ^ { 2 } + 4 \right) ^ { 5 } } { 2 } + \frac { 5 t ^ { 2 } } { 2 } + 102.4

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions