Solved

Use the Graph to Compute limx0+f(x)\lim_ { x \rightarrow 0^+ } f ( x )

Question 33

Multiple Choice

Use the graph to compute limx0+f(x) \lim_ { x \rightarrow 0^+ } f ( x ) and limx0f(x) \lim_ { x \rightarrow 0^- } f ( x ) .  Use the graph to compute  \lim_ { x \rightarrow 0^+ } f ( x )   and  \lim_ { x \rightarrow 0^- } f ( x )   .       A)   \lim_ { x \rightarrow 0^+ } f ( x )  = 2  ,  \lim_ { x \rightarrow 0^- } f ( x )  = - 1  . B)   \lim_ { x \rightarrow 0^+ } f ( x )  = 2  ,  \lim_ { x \rightarrow 0^- } f ( x )  = 2  . C)   \lim_ { x \rightarrow 0^+ } f ( x )  = - 1  ,  \lim_ { x \rightarrow 0^- } f ( x )  = - 1  . D)   \lim _ { x \rightarrow 0 ^ { + } } f ( x )  = + \infty  ,  \lim _ { x \rightarrow 0 ^ { - } } f ( x )  = + \infty  . E)  does not exist


A) limx0+f(x) =2\lim_ { x \rightarrow 0^+ } f ( x ) = 2 , limx0f(x) =1\lim_ { x \rightarrow 0^- } f ( x ) = - 1 .
B) limx0+f(x) =2\lim_ { x \rightarrow 0^+ } f ( x ) = 2 , limx0f(x) =2\lim_ { x \rightarrow 0^- } f ( x ) = 2 .
C) limx0+f(x) =1\lim_ { x \rightarrow 0^+ } f ( x ) = - 1 , limx0f(x) =1\lim_ { x \rightarrow 0^- } f ( x ) = - 1 .
D) limx0+f(x) =+\lim _ { x \rightarrow 0 ^ { + } } f ( x ) = + \infty , limx0f(x) =+\lim _ { x \rightarrow 0 ^ { - } } f ( x ) = + \infty .
E) does not exist

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions