Solved

The Number of Visitors, in Millions of Visitors Per Year n(t)=0.068t2+0.572t+4.39n ( t ) = - 0.068 t ^ { 2 } + 0.572 t + 4.39

Question 64

Multiple Choice

The number of visitors, in millions of visitors per year, to Hawaii in the years 1985 to 1993 can be approximated by
n(t) =0.068t2+0.572t+4.39n ( t ) = - 0.068 t ^ { 2 } + 0.572 t + 4.39
Where t=0t = 0 represents June 30,1985. During the same period, visitor spending can be approximated by
r(t) =0.453t2+5.6t+6.65r ( t ) = - 0.453 t ^ { 2 } + 5.6 t + 6.65
Where t=0t = 0 represents June 30,1985. Assuming the trends in the models above continue indefinitely, numerically estimate limt+r(t) n(t) \lim _ { t \rightarrow + \infty } \frac { r ( t ) } { n ( t ) } .

Please round the answers to the nearest hundredth.


A) limt+r(t) n(t) =5.21\lim _ { t \rightarrow + \infty } \frac { r ( t ) } { n ( t ) } = 5.21
B) limt+r(t) n(t) =6.66\lim _ { t \rightarrow + \infty } \frac { r ( t ) } { n ( t ) } = 6.66
C) limt+r(t) n(t) =8.66\lim _ { t \rightarrow + \infty } \frac { r ( t ) } { n ( t ) } = 8.66
D) limt+r(t) n(t) =6.11\lim _ { t \rightarrow + \infty } \frac { r ( t ) } { n ( t ) } = 6.11
E) does not exist

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions