Solved

Let XBin(m,p1) and YBin(n,p2)X \square \operatorname { Bin } \left( m , p _ { 1 } \right) \text { and } Y \square \operatorname { Bin } \left( n , p _ { 2 } \right)

Question 67

Essay

Let XBin(m,p1) and YBin(n,p2)X \square \operatorname { Bin } \left( m , p _ { 1 } \right) \text { and } Y \square \operatorname { Bin } \left( n , p _ { 2 } \right) with X and Y independent variables, and let p^1=X/m and p^2=Y/n. Then E(p^1p^2)=\hat { p } _ { 1 } = X / m \text { and } \hat { p } _ { 2 } = Y / \mathrm { n } \text {. Then } \mathrm { E } \left( \hat { \mathrm { p } } _ { 1 } - \hat { \mathrm { p } } _ { 2 } \right) =\underline{\quad\quad} ,so p^1p^2\hat { p } _ { 1 } - \hat { p } _ { 2 } is an __________ estimator of p1p2p _ { 1 } - p _ { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions