Solved

In Testing Where p1 and p2p _ { 1 } \text { and } p _ { 2 }

Question 21

Essay

In testing H0:p1p2=0 versus Hat :p1p20 where p1 and p2H _ { 0 } : p _ { 1 } - p _ { 2 } = 0 \text { versus } H _ { \text {at } } : p _ { 1 } - p _ { 2 } \neq 0 \text { where } p _ { 1 } \text { and } p _ { 2 } where p1 and p2p _ { 1 } \text { and } p _ { 2 } denote the two population proportions, the standardized variable z=(p^1p^2)/p^q^(lm+ln), where p^z = \left( \hat { p } _ { 1 } - \hat { p } _ { 2 } \right) / \sqrt { \hat { p } \hat { q } \left( \frac { l } { m } + \frac { l } { n } \right) } , \text { where } \hat { p } is an estimate of the common value of p1 and p2p _ { 1 } \text { and } p _ { 2 } and m and n are the two sample sizes, has approximately a standard normal distribution when __________.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions