Solved

Let X1,X2,,X40X _ { 1 } , X _ { 2 } , \ldots \ldots , X _ { 40 }

Question 28

Multiple Choice

Let X1,X2,,X40X _ { 1 } , X _ { 2 } , \ldots \ldots , X _ { 40 } be a random sample from a normal population with mean μ1\mu _ { 1 } and variance σ12=2.56, and let Y1,Y2,Y32\sigma _ { 1 } ^ { 2 } = 2.56 \text {, and let } Y _ { 1 } , Y _ { 2 } , \ldots \ldots Y _ { 32 } be a random sample from a normal population with mean μ2 and variance σ22=1.96\mu _ { 2 } \text { and variance } \sigma _ { 2 } ^ { 2 } = 1.96 \text {, } and that X and Y samples are independent of one another. Assume the sample mean values are xˉ=18 and yˉ=17\bar { x } = 18 \text { and } \bar { y } = 17 and we want to test H0:μ1μ2=0 versus H0:μ1μ2>0H _ { 0 } : \mu _ { 1 } - \mu _ { 2 } = 0 \text { versus } H _ { 0 } : \mu _ { 1 } - \mu _ { 2 } > 0 \text {. } Which of the following statements are correct?


A) The value of the test statistic is z = 2.83
B) The value of the test statistic is z = 1.88
C) HoH _ { o }
Is rejected at the .05 level if z1.96z \leq 1.96
D) HoH _ { o }
Is rejected at the .05 level if z1.65z \leq 1.65
E) None of the above statements are correct.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions