Solved

Let XBin(m,p1) and YBin(n,p2)X \square \operatorname { Bin } \left( m , p _ { 1 } \right) \text { and } Y \square \operatorname { Bin } \left( n , p _ { 2 } \right)

Question 44

Multiple Choice

Let XBin(m,p1)  and YBin(n,p2) X \square \operatorname { Bin } \left( m , p _ { 1 } \right) \text { and } Y \square \operatorname { Bin } \left( n , p _ { 2 } \right) with X and Y independent variables, and let p^1=X/m and p^2=Y/n\hat { p } _ { 1 } = X / m \text { and } \hat { p } _ { 2 } = Y/ n Which of the following statements are not correct?


A) E(p^1p^2) =p1p2, so p^1p^2E \left( \hat { p } _ { 1 } - \hat { p } _ { 2 } \right) = p _ { 1 } - p _ { 2 } \text {, so } \hat { p } _ { 1 } - \hat { p } _ { 2 }
Is an unbiased estimator of p1p2p _ { 1 } - p _ { 2 }
B) When both m and n are large, the estimator p^1p^2\hat { p } _ { 1 } - \hat { p } _ { \mathbf { 2 } }
Individually has approximately normal distributions.
C) When both m and n are large, the estimator p^1p^2\hat { p } _ { 1 } - \hat { p } _ { 2 }
Has approximately a normal distribution.
D) V(p^1p^2) =p1q1/mp2q2/n, where ql=1pl for i=1,2V \left( \hat { p } _ { 1 } - \hat { p } _ { 2 } \right) = p _ { 1 } q _ { 1 } / m \quad p _ { 2 } q _ { 2 } / n , \text { where } q _ { l } = 1 - p _ { l } \text { for } i = 1,2
E) All of the above statements are correct.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions