Solved

The Lower Limit of a 95% Confidence Interval for the Variance

Question 13

Multiple Choice

The lower limit of a 95% confidence interval for the variance σ2\sigma ^ { 2 } of a normal population using a sample of size n and variance value s2s ^ { 2 } is given by:


A) (n1) s2/χ.05,n12( n - 1 ) s ^ { 2 } / \chi _ { .05,_ { n - 1 } } ^ { 2 }
B) (n1) s2/χ.025,n12( n - 1 ) s ^ { 2 } / \chi _ { .025 , n - 1 } ^ { 2 }
C) (n1) s2/χ.95,n12( n - 1 ) s ^ { 2 } / \chi _ { .95, { n - 1 } } ^ { 2 }
D) (n1) s2/χ.975,n12( n - 1 ) s ^ { 2 } / \chi ^ { 2 } _{.975 , n - 1}
E) None of the above answers are correct.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions