Solved

Let θ^1,θ^2,,θ^n\hat { \theta } _ { 1 } , \hat { \theta } _ { 2 } , \cdots \cdots , \hat { \theta } _ { n }

Question 6

Short Answer

Let θ^1,θ^2,,θ^n\hat { \theta } _ { 1 } , \hat { \theta } _ { 2 } , \cdots \cdots , \hat { \theta } _ { n } be the maximum likelihood estimates (mle's) of the parameters θ1,θ2,,θn\theta _ { 1 } , \theta _ { 2 } , \cdots \cdots , \theta _ { n } . Then the mle of any function h( θ1,θ2,,θn\theta _ { 1 } , \theta _ { 2 } , \cdots \cdots , \theta _ { n } ) of these parameters is the function h(θ^1,θ^2,,θ^m)h \left( \hat { \theta } _ { 1 } , \hat { \theta } _ { 2 } , \cdots \cdots , \hat { \theta } _ { m } \right) of the mle's. This result is known as the __________ principle.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions