Solved

The Quantity ε \varepsilon In the Simple Linear Regression Model Y=β0+β1x+εY = \beta _ { 0 } + \beta _ { 1 } x + \varepsilon

Question 12

Multiple Choice

The quantity ε \varepsilon
in the simple linear regression model Y=β0+β1x+εY = \beta _ { 0 } + \beta _ { 1 } x + \varepsilon is a random variable, assumed to be normally distributed with E(ε) =0 and V(ε) =σ2E ( \varepsilon ) = 0 \text { and } V ( \varepsilon ) = \sigma ^ { 2 } The estimated standard deviation σ^\hat { \sigma } is given by


A) SSE / (n - 2)
B) SSE/(n2) \sqrt { S S E / ( n - 2 ) }
C) [SSE/(n2) ]2[ S S E / ( n - 2 ) ] ^ { 2 }
D) SSE/n2\operatorname { SSE } / \sqrt { n - 2 }
E) SSE/(n2) \sqrt { \operatorname { SSE } } / ( n - 2 )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions