Solved

Assume the Existence of I Parameters α1,α2,,αi\alpha _ { 1 } , \alpha _ { 2 } , \ldots \ldots , \alpha _ { i }

Question 46

Short Answer

Assume the existence of I parameters α1,α2,,αi\alpha _ { 1 } , \alpha _ { 2 } , \ldots \ldots , \alpha _ { i } and J parameters β1,β2,,βi\beta _ { 1 } , \beta _ { 2 } , \ldots \ldots , \beta _ { i } such that Xy=α2+βj+εy(i=1,,I and j=1,,J) and μy=α2+βjX _ { y } = \alpha _ { 2 } + \beta _ { j } + \varepsilon _ { y } ( i = 1 , \ldots \ldots , I \text { and } j = 1 , \ldots \ldots , J ) \text { and } \mu _ { y } = \alpha _ { 2 } + \beta _ { j } \text {. } The model specified by the above equations is called an __________ model because each mean response μy\mu _ { y} is the __________ of an effect due to factor A at level i(α1)i \left( \alpha _ { 1 } \right) and an effect due to factor B at level j(βj)j \left( \beta _ { j } \right) .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions