Solved

Use a Short Form Truth Table to Answer the Following

Question 113

Multiple Choice

Use a short form truth table to answer the following question.Which, if any, set of truth values assigned to the atomic sentences shows that the following argument is invalid? ABBC[(AB) C][(AB) C]\begin{array} { l } \mathrm { A } \equiv \mathrm { B } \\\mathrm { B } \equiv \mathrm { C } \\{ [ ( \mathrm { A } \cdot \mathrm { B } ) \cdot \mathrm { C } ] \cup [ ( \sim \mathrm { A } \cdot \sim \mathrm { B } ) \cdot \sim \mathrm { C } ] }\end{array}


A) A: T B: T C: T
B) A: T B: T C: F
C) A: T B: F C: T
D) A: F B: F C: F
E) None-the argument is valid.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions