Solved

In the Following Proof, Which Justification Is Correct for Line

Question 115

Multiple Choice

In the following proof, which justification is correct for line 11?  (1)  (x) [Gx(y) (HyIxy) ]Premis(2)  (x) [Gx(y) Ixy]  I(x) Hx Premise/Conclusion (3)  (x) Hx Assumption(4)  Ga(y) Iay 2EI(5)  Ga 4Sinp (6)  ( y)  Iay 4Sinp (7)  Iab 6EI(8)  Ga(y) (HyIay)  1UI (9)  (y) (HyIay)  5,8MP(10)  HbIab 9UI (11)  Hb \begin{array}{llcc} \text { (1) \( (x) [\mathrm{G} x \supset(y) (\mathrm{H} y \supset \mathrm{I} x y) ] \) } && \text {Premis} \\ \text {(2) \( (\exists x) [\mathrm{G} x \cdot(\exists y) \sim \mathrm{I} x y] \) } &\text { \(I \sim(x) \mathrm{H} x\) }&\text {Premise/Conclusion} \\ \text { (3) \( (x) \mathrm{H} x \) } && \text {Assumption}\\ \text {(4) \( \mathrm{Ga} \cdot(\exists y) \sim \mathrm{Iay} \) } && \text {\( 2 \mathrm{EI} \) }\\ \text {(5) \( \mathrm{Ga} \) } && \text {\( 4 \operatorname{Sinp} \) }\\ \text { (6) ( \( \exists y) \sim \) Iay } && \text {\( 4 \operatorname{Sinp} \) }\\ \text { (7) \( -\mathrm{Iab} \) } & & \text {\( 6 \mathrm{EI} \) } \\ \text {(8) \( \mathrm{Ga} \supset(\mathrm{y}) (\mathrm{Hy} \supset \mathrm{Iay}) \) } && \text {\( 1 \mathrm{UI} \) }\\ \text { (9) \( (\mathrm{y}) (\mathrm{Hy} \supset \mathrm{Iay}) \) } && \text {\( 5,8 \mathrm{MP} \) }\\ \text {(10) \( \mathrm{Hb} \supset \mathrm{Iab} \) } &&\text {\( 9 \mathrm{UI} \) }\\ \text { (11) \( \mathrm{Hb} \) } &\\ &\\\end{array}


A) 10 Simp
B) 7, 10 MT
C) 5, 8 MP
D) 3 UG
E) None of these answers are correct.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions