Solved

For the Following Linear Programming Problem
Max Z
-2x1 \le 7
1x1 + X2 + X3

Question 14

Essay

For the following linear programming problem
Max Z
-2x1 + x2 - x3
s.t.
2x1 + x2 \le 7
1x1 + x2 + x3 \ge 4
the final tableau is x1x2x3 s1 s2a2 Basis CB21100Ms201011113x212101007zj2101007Cjzj40110M\begin{array} { c c | c c c c c c | c } & & \mathrm { x } _ { 1 } & \mathrm { x } _ { 2 } & \mathrm { x } _ { 3 } & \mathrm {~s} _ { 1 } & \mathrm {~s} _ { 2 } & \mathrm { a } _ { 2 } & \\\text { Basis } & \mathrm { C } _ { \mathrm { B } } & - 2 & 1 & - 1 & 0 & 0 & - \mathrm { M } & \\\hline \mathrm { s } _ { 2 } & 0 & 1 & 0 & - 1 & 1 & 1 & - 1 & 3 \\\mathrm { x } _ { 2 } & 1 & 2 & 1 & 0 & 1 & 0 & 0 & 7 \\\hline & z _ { j } & 2 & 1 & 0 & 1 & 0 & 0 & 7 \\& \mathrm { C } _ { \mathrm { j } } - \mathrm { z } _ { \mathrm { j } } & - 4 & 0 & 1 & - 1 & 0 & - \mathrm { M } &\end{array}
a.Find the range of optimality for c1, c2 , c3.c4, c5 , and c6.
b.Find the range of feasibility for b1, and b2.

Correct Answer:

verifed

Verified

a.c1 blured image 2
0 blured image ...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions