Solved

The Figure Represents the Parabolic Trajectory of a Ball Going θ\theta

Question 8

Multiple Choice

The figure represents the parabolic trajectory of a ball going from a to e in Earth gravity but without air resistance. The initial velocity of the ball is Vo at an angle θ\theta to the horizon. The vertical dashed lines represent equal time interval, Δ\Delta t. Consider "up" as the positive direction.  The figure represents the parabolic trajectory of a ball going from a to e in Earth gravity but without air resistance. The initial velocity of the ball is V<sub>o</sub> at an angle  \theta  to the horizon. The vertical dashed lines represent equal time interval,  \Delta t. Consider  up  as the positive direction.   The vertical velocity at point b is [Note: g = 9.81 m/s<sup>2</sup>) ] A)  0. B)  V<sub>o</sub> cos  \theta )  - ½ g 2 \Delta t) <sup>2</sup>. C)  V<sub>o</sub> sin  \theta )  - ½ g 2 \Delta t) <sup>2</sup>. D)  V<sub>o</sub> sin \theta )  + ½ g 2 \Delta t) <sup>2</sup>. E)  V<sub>o</sub> cos  \theta )  + ½ g 2 \Delta t) <sup>2</sup>. The vertical velocity at point b is [Note: g = 9.81 m/s2) ]


A) 0.
B) Vo cos θ\theta ) - ½ g 2 Δ\Delta t) 2.
C) Vo sin θ\theta ) - ½ g 2 Δ\Delta t) 2.
D) Vo sin θ\theta ) + ½ g 2 Δ\Delta t) 2.
E) Vo cos θ\theta ) + ½ g 2 Δ\Delta t) 2.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions