Solved

If the Actual Value of a Time Series at Time MAD=t=1nAtFtn \mathrm{MAD}=\frac{\sum_{t=1}^{n}\left|A_{t}-F_{t}\right|}{n}

Question 4

Multiple Choice

If the actual value of a time series at time t and the forecast value for time t is denoted by At and Ft respectively, then the formula for the mean absolute deviation over a range of forecasted values is .


A) MAD=t=1nAtFtn \mathrm{MAD}=\frac{\sum_{t=1}^{n}\left|A_{t}-F_{t}\right|}{n}

B) MAD=t=1n(AtFt) 2n \mathrm{MAD}=\frac{\sum_{t=1}^{n}\left(A_{t}-F_{t} \mid\right) ^{2}}{n}

C) MAD=t=1nAtFn \mathrm{MAD}=\frac{\sum_{t=1}^{n} \sqrt{\left|A_{t}-F\right|}}{n}

D) MAD=t=1nAtFt2n \mathrm{MAD}=\frac{\sum_{t=1}^{n}\left|\frac{A_{t}-F_{t}}{2}\right|}{n}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions