Solved

Consider the Market Model QS=4P3QD=2P+13dPdt=0.4(QDQS)\begin{array} { l } Q _ { S } = 4 P - 3 \\Q _ { D } = - 2 P + 13 \\\frac { d P } { d t } = 0.4 \left( Q _ { D } - Q _ { S } \right)\end{array}

Question 7

Multiple Choice

Consider the market model
QS=4P3QD=2P+13dPdt=0.4(QDQS) \begin{array} { l } Q _ { S } = 4 P - 3 \\Q _ { D } = - 2 P + 13 \\\frac { d P } { d t } = 0.4 \left( Q _ { D } - Q _ { S } \right) \end{array}
Find an expression for QD(t) Q _ { D } ( t ) when P(0) =2P ( 0 ) = 2 .


A) 23(4e2.4t) \frac { 2 } { 3 } \left( 4 - e ^ { - 2.4 t } \right)

B) 13(23+4e2.4t) \frac { 1 } { 3 } \left( 23 + 4 e ^ { - 2.4 t } \right)

C) 13(4+e2.4t) \frac { 1 } { 3 } \left( 4 + e ^ { - 2.4 t } \right)

D) 23(4+e2.4t) \frac { 2 } { 3 } \left( 4 + e ^ { - 2.4 t } \right)

E) 13(238e2.4t) \frac { 1 } { 3 } \left( 23 - 8 e ^ { - 2.4 t } \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions