Solved

Which of the Following Could Represent a Function, F(x, Y) fx=3xy(xy+2)fy=x2(2xy+3)\frac { \partial f } { \partial x } = 3 x y ( x y + 2 ) \quad \frac { \partial f } { \partial y } = x ^ { 2 } ( 2 x y + 3 )

Question 3

Multiple Choice

Which of the following could represent a function, f(x, y) , with first- order partial derivatives?
fx=3xy(xy+2) fy=x2(2xy+3) \frac { \partial f } { \partial x } = 3 x y ( x y + 2 ) \quad \frac { \partial f } { \partial y } = x ^ { 2 } ( 2 x y + 3 )


A) x3y2+3x2y6x ^ { 3 } y ^ { 2 } + 3 x ^ { 2 } y - 6

B) xy(x2y+3) x y \left( x ^ { 2 } y + 3 \right)

C) x3y2+2x2y3+1x ^ { 3 } y ^ { 2 } + 2 x ^ { 2 } y ^ { 3 } + 1

D) x2(xy2+3) x ^ { 2 } \left( x y ^ { 2 } + 3 \right)

E) none of these

Correct Answer:

verifed

Verified

Related Questions