Solved

A 90% Confidence Interval Estimate of the Population Mean μ\mu Can Be Interpreted to Mean That

Question 61

Short Answer

A 90% confidence interval estimate of the population mean μ\mu can be interpreted to mean that: Aif we repeatedly draw samples of the same size from the same population, 90% of the  values of the sample means xˉ will result in a confidence interval that includes the population mean.B there is a 90% probability that the population mean will lie between the lower confidence limit (LCL) and the upper confidence limit (UCL). Cwe are 90% confident that we have selected a sample whose range of values does not contain the population mean. D We are 90% confident that 10% the values of the sample means xˉ will result in a confidence interval that includes the population mean. \begin{array}{|l|l|}\hline A&\text {if we repeatedly draw samples of the same size from the same population, \( 90 \% \) of the }\\&\text { values of the sample means \( \bar{x} \) will result in a}\\&\text { confidence interval that includes the population mean.}\\\hline B&\text { there is a \( 90 \% \) probability that the population mean will lie between the lower confidence}\\&\text { limit (LCL) and the upper confidence limit (UCL). }\\\hline C&\text {we are \( 90 \% \) confident that we have selected a sample whose range of values does }\\&\text {not contain the population mean. }\\\hline D&\text { We are \( 90 \% \) confident that \( 10 \% \) the values of the sample means \( \bar{x} \) will result in a }\\&\text {confidence interval that includes the population mean. }\\\hline \end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions