Solved

Show That the Vector Field F=3xexiy(3z5)exj+(3z5)exk\vec { F } = - 3 x e ^ { x } \vec { i } - y ( 3 z - 5 ) e ^ { x } \vec{ j } + ( 3 z - 5 ) e ^ { x } \vec { k }

Question 55

Essay

Show that the vector field F=3xexiy(3z5)exj+(3z5)exk\vec { F } = - 3 x e ^ { x } \vec { i } - y ( 3 z - 5 ) e ^ { x } \vec{ j } + ( 3 z - 5 ) e ^ { x } \vec { k } is a divergence free vector field.
Use this result to calculate O^SF×dA\hat { \mathrm {O } } _ {S}{ \vec { F } \times \vec { dA } } where S is the open surface which is the graph of f(x,y)=x2y2+4f ( x , y ) = - x ^ { 2 } - y ^ { 2 } + 4 with f(x, y) \ge 0.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions