Solved

Describe the Similarities and Differences Between the Following Two Curves  Curve 1: r(t)=(3+3t)i+(1t)j+(3+4t)k,t\text { Curve 1: } \vec { r } ( t ) = ( 3 + 3 t ) \vec { i } + ( 1 - t ) \vec { j } + ( 3 + 4 t ) \vec { k } , - \infty \leq t \leq \infty \text {, }

Question 84

Essay

Describe the similarities and differences between the following two curves.  Curve 1: r(t)=(3+3t)i+(1t)j+(3+4t)k,t\text { Curve 1: } \vec { r } ( t ) = ( 3 + 3 t ) \vec { i } + ( 1 - t ) \vec { j } + ( 3 + 4 t ) \vec { k } , - \infty \leq t \leq \infty \text {, }  Curve 2: r(t)=(3+3t2)i+(1t2)j+(3+4t2)k,t\text { Curve 2: } \vec { r } ( t ) = \left( 3 + 3 t ^ { 2 } \right) \vec { i } + \left( 1 - t ^ { 2 } \right) \vec { j } + \left( 3 + 4 t ^ { 2 } \right) \vec { k } , - \infty \leq t \leq \infty \text {. }

Correct Answer:

verifed

Verified

Curve 1 is the line with direction vecto...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions