Solved

Let r(t)=sin(t)i+cos(t)j+tk\vec { r } ( t ) = \sin ( t ) \vec { i } + \cos ( t ) \vec { j } + t \vec { k }

Question 63

Essay

Let r(t)=sin(t)i+cos(t)j+tk\vec { r } ( t ) = \sin ( t ) \vec { i } + \cos ( t ) \vec { j } + t \vec { k } and let C be the helix parameterized by r(t)\vec { r } ( t ) Find an expression for the outward pointing normal vector whose k\vec { k } component is 0 at an arbitrary point ( sin(t), cos(t), t)of C.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions