Solved

Consider the Curve r(t)=(t+1)i+(2t)j+(2t2t+3)k,0t1\vec { r } ( t ) = ( t + 1 ) \vec { i } + ( 2 - t ) \vec { j } + \left( 2 t ^ { 2 } - t + 3 \right) \vec { k } , 0 \leq t \leq 1

Question 52

Essay

Consider the curve r(t)=(t+1)i+(2t)j+(2t2t+3)k,0t1\vec { r } ( t ) = ( t + 1 ) \vec { i } + ( 2 - t ) \vec { j } + \left( 2 t ^ { 2 } - t + 3 \right) \vec { k } , 0 \leq t \leq 1 .
(a)Find a unit vector tangent to the curve at the point (1,2,3).
(b)Show that the curve lies on the surface z=x2+y2yz = x ^ { 2 } + y ^ { 2 } - y .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions